什么是拓扑关系?什么是拓扑关系什么是拓扑结构

2024-03-10 07:10:01 5

什么是拓扑关系?什么是拓扑关系什么是拓扑结构

这篇文章给大家聊聊关于拓扑关系,以及什么是拓扑关系对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。

本文目录

什么是拓扑关系

  • 指满足拓扑几何学原理的各空间数据间的相互关系。即用结点、弧段和多边形所表示的实体之间的邻接、关联、包含和连通关系。如:点与点的邻接关系、点与面的包含关系、线与面的相离关系、面与面的重合关系等。

  • 英文 topology 的音译.拓扑学就是以空间几何的形式来表现事物内部的结构,原理,工作状况等. 比如你的计算机吧,学过搜索算法吧(广度优先(breath-first)和深度优先(depth-first, 不知道中文译的对不对)算法).你在分析的时候不是把所有的状态画成一个树状表,然后来看一步步怎样查找的么.这就是运用拓扑逻辑的方法. 当然,从这里你就可以看到,拓扑都在处理离散的状态.说白了,系统逻辑流程图也是拓扑图.听起很深奥,很玄,其实常常用到.

什么是拓扑关系什么是拓扑结构

拓扑关系( topological relation),指满足拓扑几何学原理的各空间数据间的相互关系。即用结点、弧段和多边形所表示的实体之间的邻接、关联、包含和连通关系。计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星形拓扑、环形拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。

什么是拓扑关系呀

拓扑学 拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογία的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。分支学科点集拓扑学又称为一般拓扑学 组合拓扑学 代数拓扑学 微分拓扑学 几何拓扑学 拓扑学拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。在拓扑学的孕育阶段,19世纪末,就拓扑已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。什么是拓扑学?拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。拓扑变换的不变性、不变量还有很多,这里不在介绍。拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。拓扑学起初叫形势分析学,这是G.W.莱布尼茨1679年提出的名词。拓扑学这个词(中文是音译)是J.B.利斯廷1847年提出的,源自希腊文位置、形势与学问。1851年起,B.黎曼在复变函数的研究中提出,为了研究函数、研究积分,就必须研究形势分析学。从此开始了拓扑学的系统研究。组合拓扑学的奠基人是H.庞加莱。他是在分析学和力学的工作中,特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,引向拓扑学问题。他探讨了三维流形的拓扑分类问题,提出了著名的庞加莱猜想。拓扑学的另一渊源是分析学的严密化。实数的严格定义推动了G.康托尔从1873年起系统地展开了欧氏空间中的点集的研究,得出许多拓扑概念。如:聚点、开集、连通性等。在点集论的思想影响下,分析学中出现了泛函数(即函数的函数)的概念。把函数集看成一种几何对象并讨论其中的极限,这终于导致了抽象空间的观念。拓扑问题的一些初等例子:柯尼斯堡七桥问题(一笔划问题)。一个散步者怎样才能走遍七座桥而每座桥只经过一次?这个18世纪的智力游戏,被L.欧拉简化为用细线画出的网络能否一笔划出的问题,然后他证明了这是根本办不到的。一个网络能否被一笔画出,与线条的长短曲直无关,只决定于其中的点与线的连接方式。设想一个网络是用柔软而有弹性的材料制作的,在它被弯曲、拉伸后,能否一笔画出的性质是不会改变的。欧拉的多面体公式与曲面的分类。欧拉发现,不论什么形状的凸多面体,其顶点数 、棱数 、面数 之间总有 这个关系。由此可证明正多面体只有五种。如果多面体不是凸的而呈框形(图33),则不管框的形状如何,总有 。这说明,凸形与框形之间有比长短曲直更本质的差别,通俗地说,框形里有个洞。在连续变形下,凸体的表面可以变成球面,框的表面可以变成环面(轮胎面)。这两者都不能通过连续变形互变(图34)。在连续变形下封门曲面有多少种不同类型?怎样鉴别他们?这曾是19世纪后半叶拓扑学研究的主要问题。纽结问题。空间中一条自身不相交的封闭曲线,会发生打结现象。要问一个结能否解开(即能否变形成平放的圆圈),或者问两个结能否互变(如图35中两个三叶结能否互变)。同时给出严格证明,那远不是件容易的事了。布线问题(嵌入问题)。一个复杂的网络能否布在平面上而又不自相交叉?做印制电路时自然会碰到这个问题。图36左面的图,把一条对角线移到方形外面就可以布在平面上。但图37中两个图却无论怎样移动都不能布在平面上。1930年K•库拉托夫斯基证明,一个网络是否能嵌入平面,就看其中是否不含有这两个图之一。以上这些例子说明,几何图形还有一些不能用传统的几何方法来研究的性质。这些性质与长度、角度无关,它们所表现的是图形整体结构方面的特征。这种性质就是图形的所谓拓扑性质。拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。什么是拓扑学? 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 什么是拓扑学? 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。 应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 拓扑变换的不变性、不变量还有很多,这里不在介绍。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。参考资料:

拓扑关系

拓扑关系 topological relation 指满足拓扑几何学原理的各空间数据间的相互关系。即用结点、弧段和多边形所表示的实体之间的邻接、关联和包含等关系。如:点与点的邻接关系、点与面的包含关系、线与面的相离关系、面与面的重合关系等。 拓扑关系是指图形元素之间相互空间上的连接、邻接关系并不考虑具体位置.这种拓扑关系是由数字化的点、线、面数据形成的以用户的查询或应用分析要求进行图形选取、叠合、合并等操作

如果你还想了解更多这方面的信息,记得收藏关注本站。

什么是拓扑关系?什么是拓扑关系什么是拓扑结构

本文编辑:admin

更多文章:


华硕a45vd(华硕A45VD可以与哪些型号内存条兼容)

华硕a45vd(华硕A45VD可以与哪些型号内存条兼容)

本文目录华硕A45VD可以与哪些型号内存条兼容华硕A45VD插上USB数据线没反应怎么回事华硕A45VD笔记本有线网口损坏需要更换,网口是集成在主板上的吗请问华硕a45vd这款笔记本求助,华硕A45VD装黑苹果华硕a45vd集成 独立 都是

2024年7月22日 14:03

东芝m505(东芝M505笔记本 用开机按“0”方法系统还原的话 能不能只恢复C盘而其他盘的东西不会丢掉)

东芝m505(东芝M505笔记本 用开机按“0”方法系统还原的话 能不能只恢复C盘而其他盘的东西不会丢掉)

本文目录东芝M505笔记本 用开机按“0”方法系统还原的话 能不能只恢复C盘而其他盘的东西不会丢掉东芝笔记本M505有手写功能吗东芝 m505 开机显示屏不亮 开机启动三秒后自动断电,自动断电两秒后再次自启动,自启动后笔记本东芝笔记本M50

2024年7月24日 04:32

y460无线网卡更换教程(y460的网卡怎么换呢 能告诉我详细情况吗 谢谢啊)

y460无线网卡更换教程(y460的网卡怎么换呢 能告诉我详细情况吗 谢谢啊)

本文目录y460的网卡怎么换呢 能告诉我详细情况吗 谢谢啊联想Y460如何修改~无线网卡~的MAC地址Y460联通无线网卡驱动怎么安装笔记本内置无线网卡,教您笔记本内置无线网卡怎么更换y460的网卡怎么换呢 能告诉我详细情况吗 谢谢啊如果是

2024年7月18日 08:31

宁波华硕售后服务中心(华硕平板电脑宁波海曙区的维修中心在哪里)

宁波华硕售后服务中心(华硕平板电脑宁波海曙区的维修中心在哪里)

这篇文章给大家聊聊关于宁波华硕售后服务中心,以及华硕平板电脑宁波海曙区的维修中心在哪里对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。本文目录华硕平板电脑宁波海曙区的维修中心在哪里华硕adol宁波海曙区售后服务点在哪里宁波华硕售后服务

2024年8月19日 10:55

win7系统加硬盘直接加可以吗(win7系统如何增加一个硬盘)

win7系统加硬盘直接加可以吗(win7系统如何增加一个硬盘)

本文目录win7系统如何增加一个硬盘如何用硬盘直接安装win7系统台式电脑目前是固态硬盘,我想加装个机械硬盘可以直接加装吗需要注意些什么重装win7系统可以在硬盘上直接安装吗求大神帮助win7系统以有120G固态硬盘,可以在加硬盘吗组装机固

2024年7月17日 19:02

华硕w50j(亲们谁知道华硕w50j笔记本怎么样)

华硕w50j(亲们谁知道华硕w50j笔记本怎么样)

本文目录亲们谁知道华硕w50j笔记本怎么样华硕w50j怎么样华硕W50J能不能换显卡华硕w50j 怎么设置从U盘启动华硕的W50J可以加什么样的内存条华硕w50j有没有预留硬盘槽03.03华硕w50j的固态接口是什么型号的华硕W50J笔记本

2023年12月21日 02:20

戴尔主板型号大全(请帮忙看下我的电脑的主板型号)

戴尔主板型号大全(请帮忙看下我的电脑的主板型号)

本文目录请帮忙看下我的电脑的主板型号戴尔成就5090主板什么型号求戴尔(DELL)的主板型号和配置清单戴尔g155511主板型号主板型号戴尔 0T1D10,戴尔E520的主板型号请帮忙看下我的电脑的主板型号网上搜索到该主板采用的是服务器用芯

2024年7月12日 17:33

三星r519笔记本参数(三星R519笔记本可不可以玩WOW(配置如下))

三星r519笔记本参数(三星R519笔记本可不可以玩WOW(配置如下))

大家好,今天小编来为大家解答以下的问题,关于三星r519笔记本参数,三星R519笔记本可不可以玩WOW(配置如下)这个很多人还不知道,现在让我们一起来看看吧!本文目录三星R519笔记本可不可以玩WOW(配置如下)谁了解三星r519三星R51

2024年9月26日 06:25

戴尔14寸笔记本多大(谁晓得戴尔14寸笔记本电脑尺寸是多少)

戴尔14寸笔记本多大(谁晓得戴尔14寸笔记本电脑尺寸是多少)

大家好,今天小编来为大家解答以下的问题,关于戴尔14寸笔记本多大,谁晓得戴尔14寸笔记本电脑尺寸是多少这个很多人还不知道,现在让我们一起来看看吧!本文目录谁晓得戴尔14寸笔记本电脑尺寸是多少戴尔14寸笔记本多大笔记本电脑14寸具体多大谁晓得

2024年10月24日 10:40

联想y430能装64位系统吗(y430怎么才能支持64位的虚拟机啊cpu换了T9600,有方法刷BIOS吗)

联想y430能装64位系统吗(y430怎么才能支持64位的虚拟机啊cpu换了T9600,有方法刷BIOS吗)

本文目录y430怎么才能支持64位的虚拟机啊cpu换了T9600,有方法刷BIOS吗联想Y430装了win7 64位系统驱动问题我的Y430 Intel(R) Core(TM)2 Duo CPU P8400 @ 2.26GHz 4.00GB

2024年7月15日 04:10

笔记本电脑wifi功能消失了(笔记本wifi不见了)

笔记本电脑wifi功能消失了(笔记本wifi不见了)

本篇文章给大家谈谈笔记本电脑wifi功能消失了,以及笔记本wifi不见了对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。本文目录笔记本wifi不见了笔记本电脑wifi不见了笔记本wifi不见了1、确认无线功能是否有开启,通过快捷键(热

2024年9月20日 18:10

苹果电脑会越用越卡吗(mac系统卡顿严重怎么办试试这4个方法,让你的电脑焕然如新)

苹果电脑会越用越卡吗(mac系统卡顿严重怎么办试试这4个方法,让你的电脑焕然如新)

本文目录mac系统卡顿严重怎么办试试这4个方法,让你的电脑焕然如新苹果电脑运行卡顿怎么办苹果电脑mac突然巨卡苹果电脑越来越卡了是为什么苹果台式电脑用了3年了,越来越慢了,怎么优化啊苹果笔记本使用时间长了会不会卡苹果电脑会不会像window

2024年7月13日 03:25

笔记本电脑蓝屏怎么重启(笔记本电脑蓝屏怎么重启解决步骤)

笔记本电脑蓝屏怎么重启(笔记本电脑蓝屏怎么重启解决步骤)

本文目录笔记本电脑蓝屏怎么重启解决步骤笔记本蓝屏了怎么重启笔记本电脑蓝屏怎么解决笔记本电脑蓝屏怎么重启华为笔记本蓝屏怎么解决方法dell蓝屏怎么重启笔记本电脑蓝屏怎么重启解决步骤如果只是偶尔一两次蓝屏,重启电脑就可以解决。但如果经常蓝屏,那

2024年7月6日 15:47

怎么从主板上看出型号(怎么查看自己的主板的型号)

怎么从主板上看出型号(怎么查看自己的主板的型号)

本文目录怎么查看自己的主板的型号主板在哪看型号怎么查看自己的主板的型号方法一:通过BIOS查询。1. 系统启动时按 DEL 键进入 BIOS。2. 在 UEFI BIOS 中的 EZ 模式下检查您的型号名称。 (下图以ROG STRIX Z

2024年3月25日 07:25

在联想官网买电脑可靠吗(在联想官网买笔记本电脑会比在淘宝和京东上安全吗)

在联想官网买电脑可靠吗(在联想官网买笔记本电脑会比在淘宝和京东上安全吗)

大家好,在联想官网买电脑可靠吗相信很多的网友都不是很明白,包括在联想官网买笔记本电脑会比在淘宝和京东上安全吗也是一样,不过没有关系,接下来就来为大家分享关于在联想官网买电脑可靠吗和在联想官网买笔记本电脑会比在淘宝和京东上安全吗的一些知识点,

2024年10月8日 17:10

惠普笔记本电池寿命一般多久(惠普笔记本电池寿命一般多久 一根价格大概多少)

惠普笔记本电池寿命一般多久(惠普笔记本电池寿命一般多久 一根价格大概多少)

本文目录惠普笔记本电池寿命一般多久 一根价格大概多少惠普笔记本电池损坏还能用多久惠普的笔记本电脑电池能用多久惠普笔记本电池寿命是多少惠普家用笔记本电脑的电池寿命是多长惠普笔记本电池寿命一般多久 一根价格大概多少不要受不懂的人误导,一般像惠普

2024年4月25日 19:40

联想商用大客户(联想电脑公司是如何挖掘大客户的,最好为案例)

联想商用大客户(联想电脑公司是如何挖掘大客户的,最好为案例)

其实联想商用大客户的问题并不复杂,但是又很多的朋友都不太了解联想电脑公司是如何挖掘大客户的,最好为案例,因此呢,今天小编就来为大家分享联想商用大客户的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!本文目录联想电脑公司是如

2024年11月4日 02:55

联想小新无法开机(联想小新air14开不了机怎么解决)

联想小新无法开机(联想小新air14开不了机怎么解决)

大家好,联想小新无法开机相信很多的网友都不是很明白,包括联想小新air14开不了机怎么解决也是一样,不过没有关系,接下来就来为大家分享关于联想小新无法开机和联想小新air14开不了机怎么解决的一些知识点,大家可以关注收藏,免得下次来找不到哦

2024年9月17日 18:15

百元二手笔记本电脑(百元以下的二手笔记本超轻的哪款好啊)

百元二手笔记本电脑(百元以下的二手笔记本超轻的哪款好啊)

本文目录百元以下的二手笔记本超轻的哪款好啊在淘宝上买那几百的二手笔记本电脑能不能用呢,是不是真的几百块钱的二手电脑能用吗一个平常的二手笔记本电脑大约多少钱几百元能买到吗百元以下的二手笔记本超轻的哪款好啊当然是官方网站准确了,省心省力。联想首

2024年8月1日 15:10

机械师游戏本官网(机械师笔记本,牌子怎么样)

机械师游戏本官网(机械师笔记本,牌子怎么样)

本文目录机械师笔记本,牌子怎么样怎么查询机械师笔记本的保修期,小白不知道机械师笔记本怎样机械师笔记本玩逃生2可以吗 高特效流畅不流畅 卡不卡机械师笔记本怎么样好不好机械师笔记本,牌子怎么样机械师的电脑质量还是可以的,如果你要买又担心质量问题

2023年7月13日 14:00

近期文章

本站热文

电脑包尺寸对照表(电脑包要多大)
2024-07-23 11:15:58 浏览:3886
e10000(皖E10000是什么车)
2024-07-17 11:22:25 浏览:3508
ati radeon hd 5650(电脑的显卡是ATI Mobility Radeon HD 5650 (MADION PRO) ( 1 GB ) 这个显卡)
2024-07-07 05:01:37 浏览:3103
华为mate20pro版本区别(mate20pro有必要买ud版吗)
2024-07-24 08:26:42 浏览:2631
ipad买蜂窝版还是wifi版(ipad air 5买蜂窝好不好)
2024-07-17 14:35:19 浏览:2238
vivo y3配置参数(vivoy3参数是什么)
2024-07-16 07:07:06 浏览:2074
标签列表

热门搜索