图像识别算法(人脸识别算法的种类)
本文目录
- 人脸识别算法的种类
- 图像识别算法
- 图像识别算法有几种
- 人们识别图像是靠形状,那AI是怎么识别图像的
- 在图像处理中有哪些算法
- 在做图像处理时,如何提高识别算法的设计与效果的精度
- OpenCV已经将图像处理(识别)的算法写成函数了,那我们还有必要去学习这些算法吗
- 基于图像的手势识别都有哪些易实现的算法
- 搞算法(图像识别,深度学习)必须要懂C/C++吗
人脸识别算法的种类
人脸识别(facialrecognition),就是通过视频采集设备获取用户的面部图像,再利用核心的算法对其脸部的五官位置、脸型和角度进行计算分析,进而和自身数据库里已有的范本进行比对,后判断出用户的真实身份。人脸识别技术基于局部特征区域的单训练样本人脸识别方法。第一步,需要对局部区域进行定义;第二步,人脸局部区域特征的提取,依据经过样本训练后得到的变换矩阵将人脸图像向量映射为人脸特征向量;第三步,局部特征选择(可选);后一步是进行分类。分类器多采用组合分类器的形式,每个局部特征对应一个分类器,后可用投票或线性加权等方式得到终识别结果。人脸识别综合运用了数字图像/视频处理、模式识别、计算机视觉等多种技术,核心技术是人脸识别算法。目前人脸识别的算法有4种:基于人脸特征点的识别算法、基于整幅人脸图像的识别算法、基于模板的识别算法、利用神经网络进行识别的算法。作为人脸识别的第一步,人脸检测所进行的工作是将人脸从图像背景中检测出来,由于受图像背景、亮度变化以及人的头部姿势等因素影响使人脸检测成为一项复杂研究内容。检测定位:检测是判别一幅图像中是否存在人脸,定位则是给出人脸在图像中的位置。定位后得到的脸部图像信息是测量空间的模式,要进行识别工作,首先要将测量空间中的数据映射到特征空间中。采用主分量分析方法,原理是将一高维向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表征为一个低维向量,并且仅仅损失一些次要信息。通过对经过检测和定位过的人脸图像进行特征提取操作可以达到降低图像维数,从而可以减小识别计算量,提高识别精度的作用。人脸识别系统采用基于特征脸的主成分分析法(pca),根据一组人脸训练样本构造主元子空间,检测时,将测试图像投影到主元空间上,得到一组投影系数,再和各已知的人脸图像模式比较,从而得到检测结果。
图像识别算法
图像虽好,盘子太大啊。以前一直对用的算法不太满意,前天晚上居然发现以前算法里面的一个错误。可惜这是我最得意自认为最完美的算法,结果盯着看了十来个小时也没有发现算法的漏 洞,但结果就是不对。最终还是没有找出自己算法的bug,无奈之下换了一个很简单的算法,虽然速度慢不那么精确但基本够用-_-show一下我的处理结果,嘿嘿。基本驱除所有的其他区域,真是干净啊。识别率也有快100%了。并且不需要用户调整任何参数。我就非常暴力地隐藏了所有参数,鲁棒性似乎还很高。不管了,用户说要傻瓜化的,这下够傻瓜了。目的就是识别我贴在电梯限速器试验台上的四个标志,求四个标志之间连线的锐角(夹角随着速度而变化),目的就是求出张角随速度的变化规律。限速器在以一定的加速度旋转,图像是通过旋转编码器的脉冲控制外触发来进行图像采集的。最快大约200fps。限速器节圆速度大约最快2m/s
图像识别算法有几种
从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,公司模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。江苏视图科技算法提供商。
人们识别图像是靠形状,那AI是怎么识别图像的
德国研究团队给出一个原因,这个原因出乎意料:人类会关注图中对象的形状,深度学习计算机系统所用的算法不一样,它会研究对象的纹理。
首先人类向算法展示大量图片,有的图片有猫,有的没有。算法从图片中找到“特定模式”,然后用模式来做出判断,看看面对之前从未见过的图片应该贴怎样的标签。
神经网络架构是根据人类视觉系统开发的,网络各层连接在一起,从图片中提取抽象特点。神经网络系统通过一系列联系得出正确答案,不过整个处理过程十分神秘,人类往往只能在事实形成之后再解释这个神秘的过程。研究人员修改图片,欺骗神经网络,看看会发生什么事。研究人员发现,即使只是小小的修改,系统也会给出完全错误的答案,当修改幅度很大时,系统甚至无法给图片贴标签。还有一些研究人员追溯网络,查看单个神经元会对图像做出怎样的反应,理解系统学到了什么。
德国图宾根大学科学家Geirhos领导的团队采用独特方法进行研究。去年,团队发表报告称,他们用特殊噪点干扰图像,给图像降级,然后用图像训练神经网络,研究发现,如果将新图像交给系统处理,这些图像被人扭曲过(相同的扭曲),在识别扭曲图像时,系统的表现比人好。不过如果图像扭曲的方式稍有不同,神经网络就无能为力了,即使在人眼看来图像的扭曲方式并无不同,算法也会犯错。当你在很长的时间段内添加许多噪点,图中对象的形状基本不会受到影响;不过即使只是添加少量噪点,局部位置的架构也会快速扭曲。研究人员想出一个妙招,对人类、深度学习系统处理图片的方式进行测试。
算法将图像分成为小块,接下来,它不会将信息逐步融合,变成抽象高级特征,而是给每一小块下一个决定,比如这块包含自行车、那块包含鸟。再接下来,算法将决定集合起来,判断图中是什么,比如有更多小块包含自行车线索,所以图中对象是自行车。算法不会考虑小块之间的空间关系。结果证明,在识别对象时系统的精准度很高。
在图像处理中有哪些算法
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
扩展资料:
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
参考资料来源:百度百科-图像处理
在做图像处理时,如何提高识别算法的设计与效果的精度
得到更多的数据
这无疑是最简单的解决办法,深度学习模型的强大程度取决于你带来的数据。增加验证准确性的最简单方法之一是添加更多数据。如果您没有很多训练实例,这将特别有用。
如果您正在处理图像识别模型,您可以考虑通过使用数据增强来增加可用数据集的多样性。这些技术包括从将图像翻转到轴上、添加噪声到放大图像。如果您是一个强大的机器学习工程师,您还可以尝试使用GANs进行数据扩充。
请注意,您使用的增强技术会更改图像的整个类。例如,在y轴上翻转的图像没有意义!
添加更多的层
向模型中添加更多层可以增强它更深入地学习数据集特性的能力,因此它将能够识别出作为人类可能没有注意到的细微差异。
这个技巧图解决的任务的性质。
对于复杂的任务,比如区分猫和狗的品种,添加更多的层次是有意义的,因为您的模型将能够学习区分狮子狗和西施犬的微妙特征。
对于简单的任务,比如对猫和狗进行分类,一个只有很少层的简单模型就可以了。
更多的层-》更微妙的模型
更改图像大小
当您对图像进行预处理以进行训练和评估时,需要做很多关于图像大小的实验。
如果您选择的图像尺寸太小,您的模型将无法识别有助于图像识别的显著特征。
相反,如果您的图像太大,则会增加计算机所需的计算资源,并且/或者您的模型可能不够复杂,无法处理它们。
常见的图像大小包括64x64、128x128、28x28 (MNIST)和224x224 (vgg -16)。
请记住,大多数预处理算法不考虑图像的高宽比,因此较小尺寸的图像可能会在某个轴上收缩。
从一个大分辨率的图像到一个小尺寸的图像,比如28x28,通常会导致大量的像素化,这往往会对你的模型的性能产生负面影响
增加训练轮次
epoch基本上就是你将整个数据集通过神经网络传递的次数。以+25、+100的间隔逐步训练您的模型。
只有当您的数据集中有很多数据时,才有必要增加epoch。然而,你的模型最终将到达一个点,即增加的epoch将不能提高精度。
此时,您应该考虑调整模型的学习速度。这个小超参数决定了你的模型是达到全局最小值(神经网络的最终目标)还是陷入局部最小值。
全局最小是神经网络的最终目标。
减少颜色通道
颜色通道反映图像数组的维数。大多数彩色(RGB)图像由三个彩色通道组成,而灰度图像只有一个通道。
颜色通道越复杂,数据集就越复杂,训练模型所需的时间也就越长。
如果颜色在你的模型中不是那么重要的因素,你可以继续将你的彩色图像转换为灰度。
你甚至可以考虑其他颜色空间,比如HSV和Lab。
RGB图像由三种颜色通道组成:红、绿、蓝。
转移学习
迁移学习包括使用预先训练过的模型,如YOLO和ResNet,作为大多数计算机视觉和自然语言处理任务的起点。
预训练的模型是最先进的深度学习模型,它们在数百万个样本上接受训练,通常需要数月时间。这些模型在检测不同图像的细微差别方面有着惊人的巨大能力。
这些模型可以用作您的模型的基础。大多数模型都很好,所以您不需要添加卷积和池化。
迁移学习可以大大提高你的模型的准确性~50%到90%!
超参数
上面的技巧为你提供了一个优化模型的基础。要真正地调整模型,您需要考虑调整模型中涉及的各种超参数和函数,如学习率(如上所述)、激活函数、损失函数、甚至批大小等都是非常重要的需要调整的参数。
总结
这些技巧是希望大家在不知道如何去做的时候可以快速的找到提高的思路。
还有无数其他方法可以进一步优化你的深度学习,但是上面描述的这些方法只是深度学习优化部分的基础。
图像处理
OpenCV已经将图像处理(识别)的算法写成函数了,那我们还有必要去学习这些算法吗
同一个目标,可能通过多个算法都可以达到,但是哪一个才是最有用的呢?如果不了解算法原理,可能就需要多次实验,然后取最好的结果。
还一个,现在图像岗位的面试,还是会问你算法原理的,不知基本原理,就谈不上改进和创新了。
所以,要学就要学的彻底些~
基于图像的手势识别都有哪些易实现的算法
谷歌公司的科学家们今年推出了一种新的计算机视觉方法,用于实现手部感知。作为幕后推手,机器学习技术为提供了强大助力。根据介绍,该方案能够在实机实验中仅凭一帧图像识别出一只手(或者多只手)上的21个3D点位。与目前市面的手势识别技术相比,谷歌的全新技术不需要依赖台式机来计算,只要在手机上就能进行实时追踪,并且还能同时追踪多只手,可识别遮挡。
早在今年6月,谷歌就在2019计算机视觉与模式识别大会上公布了此项技术的预览版本。2月之后,谷歌于美国时间8月20日正式宣布将该技术集成于MediaPipe当中。MediaPipe是一套开源跨平台框架,用于构建多模应用机器学习流水线,可以处理不同模态(例如视频与音频)中的感知数据。该项目的源代码以及端到端使用场景目前都已经在GitHub上全面公开。
研究工程师Valentin Bazarevsky和Fan Zhang在博文他们的当中写道:“感知手部形状与运动姿态的能力,有望成为改善各类技术表现及平台用户体验的重要助力。我们希望将这种手部感知功能交付至更为广泛的研究与开发社区处,利用大家的力量共同促进创新用例的出现,刺激新的应用方式并开拓出前所未有的研究途径。”
据了解,谷歌的这一技术包含三套串联工作的AI模型:一个手掌探测模型(BlazePalm)用于分析框体并返回手部动作边框;一个手部标记模型(Landmark),用于查看由手掌探测器定义的裁剪后图像区域,并返回3D位点;一个手势识别模型,用于将之前计算得出的位点归类为一组手势。
BlazePalm:手部识别绝不像听起来那么简单。GlazePalm必须能够解决手部遮挡这一现实难题。为此,谷歌团队训练出一款手掌探测器BlazePalm——注意,是手掌而不是手部。他们认为,对拳头这类物体进行边界框描绘,在难度上要比跟踪手指低得多。具体地,BlazePalm可以识别多种不同手掌大小,具备较大的缩放范围,还能识别手部遮挡,能通过识别手臂、躯干或个人特征等信息准确定位手部。除此之外,这种方式还有另一大优势,就是能够很好地兼容握手等特殊场景,利用忽略其它宽高比条件的方形边框模拟手掌,从而将所需的3D点数缩减至以往的三分之一到五分之一。据统计,经过训练之后,BlazePalm识别手掌的准确率可以达到95.7%。
Landmark:在手掌检测之后,手部标记模型开始接管,负责在检测到的手部区域之内建立21个由手到肘的3D定位坐标。在训练当中,模型要求研究人员手动注释多达3万份真实场景下的图像,并立足多种背景对相应坐标进行渲染和映射,最终创建出高质量的合成手部模型。据统计,在经过训练后,算法的平均回归误差可降低到13.4%。
手势识别模型:流水线上的最后一步是手势识别,该模型利用关节旋转角度来确定每根手指的状态(如弯曲或伸直),并将手指状态集合与预定义的手势映射起来,进而预测基础的静态手势。Bazarevsky和Zhang介绍称,该模型能够识别来自多种文化(例如美国、欧洲与中国)的算数手势,以及握拳、“OK”、“摇滚”、“蜘蛛侠”等常见手势。
除此之外,这些模型也可以执行对应的单独任务,例如利用显卡进行图像裁剪与渲染,从而节约计算资源;并且,手掌探测模型只有在必要时才运行——因为在大多数时段内,后续视频帧内的手部位置只凭计算出的手部关键点即可推理得出,不再需要手掌探测器的参与。也就是说,只有当推理置信度低于某个阈值时,手部检测模型才会重新介入。
搞算法(图像识别,深度学习)必须要懂C/C++吗
由于图像识别、深度学习这方面已经有许多人做了基础性工作,他们提供的程序或者库都是利用c或c++形式提供的,或者是类似的调用接口,因此要利用这些库、将这些基本算法结合到自己的工程中来,需要c和c++的知识算法应当是可移植的,同时又不能离硬件太远。可移植的特点是要求编程语言具备可移植性、通用性,c或c++是比较好的载体;所谓离硬件不太远,是因为要在算法优化方面有需求时,需要针对硬件特点,或者硬件提供的能力,做到发挥算法的最大效能,由于c语言可以很好地结合汇编语言和高级语言,因此在优化方面是比较灵活的。如果大部分通用算法都是用c或c++编写的,为成为通用算法,你有可能需要顺应这一习惯,以便别人将你的算法结合到他们的c或c++工程中去。往往你的算法是在别人编写的现有算法上改进得到,如果别人的算法就是c或c++编写的,你需要这方面的知识来消化别人算法的思路,理解成熟算法的意图。
本文相关文章:
人脸识别考勤真的比指纹识别考勤更好吗?指纹考勤机如何正确操作
2024年6月21日 23:20
甘肃人社认证app下载(甘肃人社认证人脸识别系统出现网络超时怎么办)
2023年11月7日 11:32
王者荣耀人脸识别安全吗?国内有什么旅游景点是有特色的,具体介绍一下
2023年10月10日 15:51
更多文章:
问一个关于技嘉刷bioss的问题?技嘉Intel主板如何开启AHCI
2024年9月1日 10:00
重庆宏基笔记本维修中心(重庆ACER笔记本售后服务中心在什么位置)
2023年7月1日 03:50
华擎bios引导设置(华擎b560m-itx bios设置)
2023年8月17日 20:00
mwc大会主题(如何评价华为在MWC都取消的情况下,还在西班牙现场开产品发布会)
2023年3月1日 23:15
理光2014复印机(理光复印机2014出现sc542 如何解决)
2023年7月14日 10:50
chromium官网(国内浏览器基本被360垄断,为何一些官网要求用谷歌、火狐上传)
2024年7月20日 21:40
三星s4手机系统壁纸(三星S4的自带壁纸在手机的哪个文件夹里大神~求解~)
2024年9月11日 22:45
iphone5概念图(IPHONE3相比IPGONE4有何不同网上的IPHONE5概念图是真的吗)
2023年1月26日 19:30