如何成为数据分析专家数据分析师要学什么?数据分析师日常都分析哪些数据
本文目录
如何成为数据分析专家数据分析师要学什么
【导读】大数据是未来发展必然趋势,不懂数据分析很可能在将来会被时代所淘汰,所以现在很多人都争抢学习数据分析,而且很多人都是零基础学习。零基础学习数据分析是有一定难度的,需要大家提前做一些准备。想知道如何成为数据分析专家?数据分析师要学什么吗?接着往下看吧!
1.统计学相关知识
统计学是数据分析的基础,因为数据分析需要对大量数据进行统计分析,大家可以通过对统计学的学习,培养数据分析最基本的一些逻辑思维。
2. EXCEL
不要小看EXCEL,它可是最初级的数据分析工具,在处理的数据量不是很大时,EXCEL完全可以胜任。而且大家都有一定基础,平时工作中也经常用,学习起来应该很容易,重点应该加强对于各类函数以及EXCEL数据可视化的学习。
3.代码语言的了解
数据分析需要使用的工具很多,例如python、SQL等,这些都需要强大的代码知识做支撑,所以有想学习数据分析的小伙伴可以在学习之前初步对代码有一个了解,这样不至于真正学习起来手足无措。
以上就是小编今天给大家整理发送的关于“如何成为数据分析专家?数据分析师要学什么?”的相关内容,希望对大家有所帮助。总的来说随着大数据在众多行业中的应用,大数据技术工作能力的工程师和开发人员是很吃香的。希望各位大家在备考或者学习之前做好准备,下足功夫不要凭空想象的想要取得优异的成绩。
数据分析师日常都分析哪些数据
数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
通过面向企业业务场景提供一站式大数据分析解决方案,能够为企业在增收益、降成本、提效率、控成本等四个角度带来价值贡献。
1、增收益
最直观的应用,即利用数据分析实现数字化精准营销。通过深度分析用户购买行为、消费习惯等,刻画用户画像,将数据分析结果转化为可操作执行的客户管理策略,以最佳的方式触及更多的客户,以实现销售收入的增长。
下图为推广收支测算分析,为广告投放提供决策依据。
下图为渠道销量分析,为渠道支持提供数据支撑。
2、降成本
例如通过数据分析实现对财务和人力的管理,从而控制各项成本、费用的支出,实现降低成本的作用。
下图为生产成本分析,了解成本构成情况。
下图为期间费用预实对比分析,把控费用情况。
3、提效率
每个企业都会出具相关报表,利用数据分析工具,不懂技术的业务人员也能够通过简单的拖拉拽实现敏捷自助分析,无需业务人员提需求、IT人员做报表,大大提高报表的及时性,提高了报表的使用效率。
通过数据分析工具,能够在PC端展示,也支持移动看板,随时随地透视经营,提高决策效率。
4、控风险
预算是否超支?债务是否逾期?是否缺货了、断货了?客户的回款率怎么样?设备的运行是否正常?哪种产品是否需要加速生产以实现产销平衡?...其实,几乎每个企业都会遇到各种各样的风险问题。通过数据分析,能够帮助企业进行实时监测,对偏离了预算的部分、对偏离了正常范围的数值能够进行主动预警,降低企业风险。
下图为税负率指标,当综合税负率过高,可以实现提示和预警。
下图为重要指标预警,重点监控项目的毛利率。
数据分析师需要学什么
首先你要知道成为一名数据分析师所需要具备的技能:数学知识对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。分析工具对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。编程语言数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。业务理解对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。逻辑思维对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。数据可视化数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。协调沟通数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
更多文章:
pptv聚力手机版本下载(安卓新版的PPTV聚力缓存的电影都缓存到哪个文件夹里了)
2024年9月13日 09:35
五个对爱情充满幻想的星座,除了双鱼座你还知道哪些星座呢?什么是恋爱幻想症
2024年6月6日 14:45
逍遥小说网为什么打不开?金山通行证(逍遥网)和金山毒霸通行证(金山会员)有什么区别
2024年1月15日 08:45
microsoft+office+2010(Microsoft Office 2010产品密匙)
2024年9月30日 01:50
新浪微博钱包怎样提现(图文)?新浪微博钱包借钱查征信上征信吗
2024年5月23日 22:10
怎么把QQ浏览器的魔镜推广删除?QQ宠物企鹅的用品(包括食品日用品)都叫什么名字功用,跪求!(还包括买不到的)
2024年7月3日 18:49
求推荐一款千元内手机能玩大型游戏不卡(APK安装包155的)的安卓手机,不发热电池耐用不要总充电,?安卓系统的电话号码存在哪个文件夹里
2024年2月29日 20:05