ultrasonics(有投过ultrasonics的吗,为嘛一直with editor)

2023-02-10 12:30:01 69

ultrasonics(有投过ultrasonics的吗,为嘛一直with editor)

本文目录

有投过ultrasonics的吗,为嘛一直with editor

根据杂志而定,有的快有的慢,有的with editor 一天后就under review了。有的两个月都算正常。 更有的投稿系统根本没有with editor这个过程,就是同一个期刊都有不同的时间 这个和杂志和审稿人都有关系,投文章需要点耐心啊,国外SCI总的来说比

必能信超声(上海)有限公司怎么样

简介:全球《财富》五百强企业之一的艾默生公司( www.gotoemerson.com ),总部设于美国密苏里州圣路易斯市,在融合科技与技术工程领域中占全球领导者地位。旗下六十多家行业内领先的分公司,通过其八大业务品牌:艾默生网络能源、艾默生过程管理、艾默生环境优化技术、艾默生工业自动化、艾默生电机科技、艾默生家电应用技术、艾默生储存技术、艾默生专业工具,为客户提供创新产品及综合解决方案。二OO三年财政年度销售总额达一百四十亿美元。
必能信超声(上海)有限公司(www.branson-china.com)是美国艾默生电气集团所属子公司,创立于1946年,至今有近60年的历史。公司主要生产各类超声波清洗设备,激光、超声波和振动摩擦塑料焊接设备以及金属焊接设备,是塑料焊接和精密清洗工业领域的领导者,他无论是在设备的设计、开发、生产乃至市场营销方面,都是世界领先的。公司在全球范围内拥有70个销售服务网点和近2000名员工,并在美国、加拿大、墨西哥、德国、斯洛伐克、中国、中国香港、日本及韩国设立有研发和生产基地。现因公司业务在上海的迅勐发展,诚邀优秀人士加盟。
所述职位均要求良好的英语沟通能力,符合要求者请将您的中英文简历,证书复印件以及期望薪资寄往本公司。
Attractive remuneration package will be offered to successful candidates. Personal data provided by job applicants will be used strictly in accordance with our personal data policy, a copy of which will be provided immediately upon request.
非中介不收费
法定代表人:Jon Christopher Piasecki
成立日期:1993-03-26
注册资本:207万美元
所属地区:上海市
统一社会信用代码:91310000607217521C
经营状态:存续(在营、开业、在册)
所属行业:制造业
公司类型:有限责任公司(外国法人独资)
英文名:Branson Ultrasonics (Shanghai) Co., Ltd.
人员规模:100-499人
企业地址:上海市松江工业区荣乐东路758号5号厂房2楼
经营范围:开发、生产各类超声波及电子仪器、设备和震动摩擦焊接设备、激光焊接设备,销售和一般性租赁自产产品和从事公司自产产品的同类商品(特种商品除外)的批发、零售、一般性租赁业务,国内采购商品(特种商品除外)的批发及零售(如设立店铺需另行报批)业务,并进行售后服务及维修;以服务外包方式从事企业管理、项目管理、数据处理服务。【依法须经批准的项目,经相关部门批准后方可开展经营活动】

请高手帮助,我需要关于超声波的文献翻译,字数在3000以上的那种急!

Introduction
vibrations of frequencies greater than the upper limit of the audible range for humans—that is, greater than about 20 kilohertz. The term sonic is applied to ultrasound waves of very high amplitudes. Hypersound, sometimes called praetersound or microsound, is sound waves of frequencies greater than 1013 hertz. At such high frequencies it is very difficult for a sound wave to propagate efficiently; indeed, above a frequency of about 1.25 × 1013 hertz, it is impossible for longitudinal waves to propagate at all, even in a liquid or a solid, because the molecules of the material in which the waves are traveling cannot pass the vibration along rapidly enough.
TableMany animals have the ability to hear sounds in the human ultrasonic frequency range. Some ranges of hearing for mammals and insects are compared with those of humans in the Table. A presumed sensitivity of roaches and rodents to frequencies in the 40 kilohertz region has led to the manufacture of “pest controllers” that emit loud sounds in that frequency range to drive the pests away, but they do not appear to work as advertised.
Transducers
An ultrasonic transducer is a device used to convert some other type of energy into an ultrasonic vibration. There are several basic types, classified by the energy source and by the medium into which the waves are being generated. Mechanical devices include gas-driven, or pneumatic, transducers such as whistles as well as liquid-driven transducers such as hydrodynamic oscillators and vibrating blades. These devices, limited to low ultrasonic frequencies, have a number of industrial applications, including drying, ultrasonic cleaning, and injection of fuel oil into burners. Electromechanical transducers are far more versatile and include piezoelectric and magnetostrictive devices. A magnetostrictive transducer makes use of a type of magnetic material in which an applied oscillating magnetic field squeezes the atoms of the material together, creating a periodic change in the length of the material and thus producing a high-frequency mechanical vibration. Magnetostrictive transducers are used primarily in the lower frequency ranges and are common in ultrasonic cleaners and ultrasonic machining applications.
By far the most popular and versatile type of ultrasonic transducer is the piezoelectric crystal, which converts an oscillating electric field applied to the crystal into a mechanical vibration. Piezoelectric crystals include quartz, Rochelle salt, and certain types of ceramic. Piezoelectric transducers are readily employed over the entire frequency range and at all output levels. Particular shapes can be chosen for particular applications. For example, a disc shape provides a plane ultrasonic wave, while curving the radiating surface in a slightly concave or bowl shape creates an ultrasonic wave that will focus at a specific point.
Piezoelectric and magnetostrictive transducers also are employed as ultrasonic receivers, picking up an ultrasonic vibration and converting it into an electrical oscillation.
Applications in research
One of the important areas of scientific study in which ultrasonics has had an enormous impact is cavitation. When water is boiled, bubbles form at the bottom of the container, rise in the water, and then collapse, leading to the sound of the boiling water. The boiling process and the resulting sounds have intrigued people since they were first observed, and they were the object of considerable research and calculation by the British physicists Osborne Reynolds and Lord Rayleigh, who applied the term cavitation to the process of formation of bubbles. Because an ultrasonic wave can be used carefully to control cavitation, ultrasound has been a useful tool in the investigation of the process. The study of cavitation has also provided important information on intermolecular forces.
Research is being carried out on aspects of the cavitation process and its applications. A contemporary subject of research involves emission of light as the cavity produced by a high-intensity ultrasonic wave collapses. This effect, called sonoluminescence, is believed to create instantaneous temperatures hotter than the surface of the Sun.
The speed of propagation of an ultrasonic wave is strongly dependent on the viscosity of the medium. This property can be a useful tool in investigating the viscosity of materials. Because the various parts of a living cell are distinguished by differing viscosities, acoustical microscopy can make use of this property of cells to “see” into living cells, as will be discussed below in Medical applications.
Ranging and navigating
Sonar (sound navigation and ranging) has extensive marine applications. By sending out pulses of sound or ultrasound and measuring the time required for the pulses to reflect off a distant object and return to the source, the location of that object can be ascertained and its motion tracked. This technique is used extensively to locate and track submarines at sea and to locate explosive mines below the surface of the water. Two boats at known locations can also use triangulation to locate and track a third boat or submarine. The distance over which these techniques can be used is limited by temperature gradients in the water, which bend the beam away from the surface and create shadow regions. One of the advantages of ultrasonic waves over sound waves in underwater applications is that, because of their higher frequencies (or shorter wavelengths), the former will travel greater distances with less diffraction.
Ranging has also been used to map the bottom of the ocean, providing depth charts that are commonly used in navigation, particularly near coasts and in shallow waterways. Even small boats are now equipped with sonic ranging devices that determine and display the depth of the water so that the navigator can keep the boat from beaching on submerged sandbars or other shallow points. Modern fishing boats use ultrasonic ranging devices to locate schools of fish, substantially increasing their efficiency.
Even in the absence of visible light, bats can guide their flight and even locate flying insects (which they consume in flight) through the use of sonic ranging. Ultrasonic echolocation has also been used in traffic control applications and in counting and sorting items on an assembly line. Ultrasonic ranging provides the basis of the eye and vision systems for robots, and it has a number of important medical applications (see below).
The Doppler effect
If an ultrasonic wave is reflected off a moving obstacle, the frequency of the resulting wave will be changed, or Doppler-shifted. More specifically, if the obstacle is moving toward the source, the frequency of the reflected wave will be increased; and if the obstacle is moving away from the source, the frequency of the reflected wave will be decreased. The amount of the frequency shift can be used to determine the velocity of the moving obstacle. Just as the Doppler shift for radar, an electromagnetic wave, can be used to determine the speed of a moving car, so can the speed of a moving submarine be determined by the Doppler shift of a sonar beam. An important industrial application is the ultrasonic flow meter, in which reflecting ultrasound off a flowing liquid leads to a Doppler shift that is calibrated to provide the flow rate of the liquid. This technique also has been applied to blood flow in arteries. Many burglar alarms, both for home use and for use in commercial buildings, employ the ultrasonic Doppler shift principle. Such alarms cannot be used where pets or moving curtains might activate them.
Materials testing
Nondestructive testing involves the use of ultrasonic echolocation to gather information on the integrity of mechanical structures. Since changes in the material present an impedance mismatch from which an ultrasonic wave is reflected, ultrasonic testing can be used to identify faults, holes, cracks, or corrosion in materials, to inspect welds, to determine the quality of poured concrete, and to monitor metal fatigue. Owing to the mechanism by which sound waves propagate in metals, ultrasound can be used to probe more deeply than any other form of radiation. Ultrasonic procedures are used to perform in-service inspection of structures in nuclear reactors.
Structural flaws in materials can also be studied by subjecting the materials to stress and looking for acoustic emissions as the materials are stressed. Acoustic emission, the general name for this type of nondestructive study, has developed as a distinct field of acoustics.
High-intensity applications
High-intensity ultrasound has achieved a variety of important applications. Perhaps the most ubiquitous is ultrasonic cleaning, in which ultrasonic vibrations are set up in small liquid tanks in which objects are placed for cleaning. Cavitation of the liquid by the ultrasound, as well as the vibration, create turbulence in the liquid and result in the cleaning action. Ultrasonic cleaning is very popular for jewelry and has also been used with such items as dentures, surgical instruments, and small machinery. Degreasing is often enhanced by ultrasonic cleaning. Large-scale ultrasonic cleaners have also been developed for use in assembly lines.
Ultrasonic machining employs the high-intensity vibrations of a transducer to move a machine tool. If necessary, a slurry containing carborundum grit may be used; diamond tools can also be used. A variation of this technique is ultrasonic drilling, which makes use of pneumatic vibrations at ultrasonic frequencies in place of the standard rotary drill bit. Holes of virtually any shape can be drilled in hard or brittle materials such as glass, germanium, or ceramic.
Ultrasonic soldering has become important, especially for soldering unusual or difficult materials and for very clean applications. The ultrasonic vibrations perform the function of cleaning the surface, even removing the oxide layer on aluminum so that the material can be soldered. Because the surfaces can be made extremely clean and free from the normal thin oxide layer, soldering flux becomes unnecessary.
Chemical and electrical uses
The chemical effects of ultrasound arise from an electrical discharge that accompanies the cavitation process. This forms a basis for ultrasound’s acting as a catalyst in certain chemical reactions, including oxidation, reduction, hydrolysis, polymerization and depolymerization, and molecular rearrangement. With ultrasound, some chemical processes can be carried out more rapidly, at lower temperatures, or more efficiently.
The ultrasonic delay line is a thin layer of piezoelectric material used to produce a short, precise delay in an electrical signal. The electrical signal creates a mechanical vibration in the piezoelectric crystal that passes through the crystal and is converted back to an electrical signal. A very precise time delay can be achieved by constructing a crystal with the proper thickness. These devices are employed in fast electronic timing circuits.
Medical applications
Although ultrasound competes with other forms of medical imaging, such as X-ray techniques and magnetic resonance imaging, it has certain desirable features—for example, Doppler motion study—that the other techniques cannot provide. In addition, among the various modern techniques for the imaging of internal organs, ultrasonic devices are by far the least expensive. Ultrasound is also used for treating joint pains and for treating certain types of tumours for which it is desirable to produce localized heating. A very effective use of ultrasound deriving from its nature as a mechanical vibration is the elimination of kidney and bladder stones.
Diagnosis
Much medical diagnostic imaging is carried out with X rays. Because of the high photon energies of the X ray, this type of radiation is highly ionizing—that is, X rays are readily capable of destroying molecular bonds in the body tissue through which they pass. This destruction can lead to changes in the function of the tissue involved or, in extreme cases, its annihilation.
One of the important advantages of ultrasound is that it is a mechanical vibration and is therefore a nonionizing form of energy. Thus, it is usable in many sensitive circumstances where X rays might be damaging. Also, the resolution of X rays is limited owing to their great penetrating ability and the slight differences between soft tissues. Ultrasound, on the other hand, gives good contrast between various types of soft tissue.
Ultrasonic scanning in medical diagnosis uses the same principle as sonar. Pulses of high-frequency ultrasound, generally above one megahertz, are created by a piezoelectric transducer and directed into the body. As the ultrasound traverses various internal organs, it encounters changes in acoustic impedance, which cause reflections. The amount and time delay of the various reflections can be analyzed to obtain information regarding the internal organs. In the B-scan mode, a linear array of transducers is used to scan a plane in the body, and the resultant data is displayed on a television screen as a two-dimensional plot. The A-scan technique uses a single transducer to scan along a line in the body, and the echoes are plotted as a function of time. This technique is used for measuring the distances or sizes of internal organs. The M-scan mode is used to record the motion of internal organs, as in the study of heart dysfunction. Greater resolution is obtained in ultrasonic imaging by using higher frequencies—i.e., shorter wavelengths. A limitation of this property of waves is that higher frequencies tend to be much more strongly absorbed.
Because it is nonionizing, ultrasound has become one of the staples of obstetric diagnosis. During the process of drawing amniotic fluid in testing for birth defects, ultrasonic imaging is used to guide the needle and thus avoid damage to the fetus or surrounding tissue. Ultrasonic imaging of the fetus can be used to determine the date of conception, to identify multiple births, and to diagnose abnormalities in the development of the fetus.
Ultrasonic Doppler techniques have become very important in diagnosing problems in blood flow. In one technique, a three-megahertz ultrasonic beam is reflected off typical oncoming arterial blood with a Doppler shift of a few kilohertz—a frequency difference that can be heard directly by a physician. Using this technique, it is possible to monitor the heartbeat of a fetus long before a stethoscope can pick up the sound. Arterial diseases such as arteriosclerosis can also be diagnosed, and the healing of arteries can be monitored following surgery. A combination of B-scan imaging and Doppler imaging, known as duplex scanning, can identify arteries and immediately measure their blood flow; this has been extensively used to diagnose heart valve defects.
Using ultrasound with frequencies up to 2,000 megahertz, which has a wavelength of 0.75 micrometre in soft tissues (as compared with a wavelength of about 0.55 micrometre for light), ultrasonic microscopes have been developed that rival light microscopes in their resolution. The distinct advantage of ultrasonic microscopes lies in their ability to distinguish various parts of a cell by their viscosity. Also, because they require no artificial contrast mediums, which kill the cells, acoustic microscopy can study actual living cells.
Therapy and surgery
Because ultrasound is a mechanical vibration and can be well focused at high frequencies, it can be used to create internal heating of localized tissue without harmful effects on nearby tissue. This technique can be employed to relieve pains in joints, particularly in the back and shoulder. Also, research is now being carried out in the treatment of certain types of cancer by local heating, since focusing intense ultrasonic waves can heat the area of a tumour while not significantly affecting surrounding tissue.
Trackless surgery—that is, surgery that does not require an incision or track from the skin to the affected area—has been developed for several conditions. Focused ultrasound has been used for the treatment of Parkinson’s disease by creating brain lesions in areas that are inaccessible to traditional surgery. A common application of this technique is the destruction of kidney stones with shock waves formed by bursts of focused ultrasound. In some cases, a device called an ultrasonic lithotripter focuses the ultrasound with the help of X-ray guidance, but a more common technique for destruction of kidney stones, known as endoscopic ultrasonic disintegration, uses a small metal rod inserted through the skin to deliver ultrasound in the 22- to 30-kilohertz frequency region.
Infrasonics
The term infrasonics refers to waves of a frequency below the range of human hearing—i.e., below about 20 hertz. Such waves occur in nature in earthquakes, waterfalls, ocean waves, volcanoes, and a variety of atmospheric phenomena such as wind, thunder, and weather patterns. Calculating the motion of these waves and predicting the weather using these calculations, among other information, is one of the great challenges for modern high-speed computers.
TableAircraft, automobiles, or other rapidly moving objects, as well as air handlers and blowers in buildings, also produce substantial amounts of infrasonic radiation. Studies have shown that many people experience adverse reactions to large intensities of infrasonic frequencies, developing headaches, nausea, blurred vision, and dizziness. On the other hand, a number of animals are sensitive to infrasonic frequencies, as indicated in the Table. It is believed by many zoologists that this sensitivity in animals such as elephants may be helpful in providing them with early warning of earthquakes and weather disturbances. It has been suggested that the sensitivity of birds to infrasound aids their navigation and even affects their migration.
One of the most important examples of infrasonic waves in nature is in earthquakes. Three principal types of earthquake wave exist: the S-wave, a transverse body wave; the P-wave, a longitudinal body wave; and the L-wave, which propagates along the boundary of stratified mediums. L-waves, which are of great importance in earthquake engineering, propagate in a similar way to water waves, at low velocities that are dependent on frequency. S-waves are transverse body waves and thus can only be propagated within solid bodies such as rocks. P-waves are longitudinal waves similar to sound waves; they propagate at the speed of sound and have large ranges.
When P-waves propagating from the epicentre of an earthquake reach the surface of the Earth, they are converted into L-waves, which may then damage surface structures. The great range of P-waves makes them useful in identifying earthquakes from observation points a great distance from the epicentre. In many cases, the most severe shock from an earthquake is preceded by smaller shocks, which provide advance warning of the greater shock to come. Underground nuclear explosions also produce P-waves, allowing them to be monitored from any point in the world if they are of sufficient intensity.
The reflection of man-made seismic shocks has helped to identify possible locations of oil and natural-gas sources. Distinctive rock formations in which these minerals are likely to be found can be identified by sonic ranging, primarily at infrasonic frequencies.
Environmental noise
Many forms of noise in the urban environment, including traffic and airplane noise, industrial noise, and noise from electronically amplified music performed at high audio levels in confined rooms, may contribute to hearing damage. Even when t

超声波 无损检测 的英语怎么说(写)

超声波 ultrasonic
其它相关解释:
《ultrasonic wave》 《ultrasonic sound》 《superaudible》 《ultrasound》 《supersonic》 《ultrasound wave》 《supersonic wave》 《ultrasonic waves》 《supersound》 《ultra-audio wave》 《supersonic rays》 《ultrasonics》 《hyperacoustic》 《UW》
无损检测 nondestructive examination (NDE)

求翻译:过载指示灯亮,表示超声波电流过载是什么意思

过载指示灯亮,表示超声波电流过载
翻译成英文是:The overload indicator light indicates that the ultrasonic current is over loaded.
相关单词学习:
indicate 英
vt. 表明,标示,指示; 象征,暗示,预示; 显示需要做…的治疗;
A survey of retired people has indicated that most are independent and enjoying life
对退休人员的调查表明,大部分人都自食其力,享受生活。
第三人称单数:indicates 现在分词:indicating 过去式:indicated过去分词:indicated
ultrasonic

adj. 超声的; 超音波的,超音速的;
n. 超声波;
He measured the speed at which ultrasonic waves travel along the bone.
他测出了超声波穿过骨头的速度。
复数:ultrasonics

物理学人员留学英语词汇

物理学人员留学必备英语词汇

  物理学是人类当之无愧智能的结晶,文明的瑰宝。下面有我整理的物理学相关的英语词汇,希望能帮到大家!

  gravity n. 地心引力,重力,严重,庄重,严肃

  sound vt. 听(诊);测量,测…深;使发声;试探;宣告 n. 声音,语音;噪音;海峡;吵闹;听力范围; 探条 adj. 健全的,健康的;合理的;可靠的;有效彻底的 adv. 彻底地,充分地 vi. 听起来;发出声音;回响;测深

  acoustics n. (作单数)音响学, 声学 n. (复数) 音响效果

  vibration n. 震动, 颤动

  wavelength n. 波长, 波段

  intensity n. 激烈,强度,强烈,剧烈

  sonar n. 声纳,声波定位器

  energy n. 活力,精力,能力,能,能量

  magnifier n. 放大镜,放大器

  ultraviolet adj. 紫外线的 n.紫外线

  infrared ray 红外线

  dispersion n. 散布

  transparent adj. 透明的, 明显的, 清晰的

  translucent adj. 半透明的.

  opaque adj. 不透明的, 难懂的

  electron tube n. 真空管, 电子管

  electron n. 电子

  static electricity n.静位觉

  static n. 静电, 静电干扰, 噪声, 阻碍, 抨击 adj. 静态的,静电的,固态的

  semiconductor n. 半导体

  electric circuit n. 电路

  circuit n. 电路,一圈,巡回 vt. &vi. 巡回

  electric shock 触电, 电休克

  shock n. 震动,冲突,震惊,休克 vt. &vi.震动,冲突,使...受电击

  storage battery n. 蓄电池

  storage n. 储存体, 储藏, 仓库, 保管费

  magnetism n. 磁性, 吸引力, 磁学

  electromagnetism n. 电磁, 电磁学

  velocity n. 速度, 速率, 迅速

  acceleration n. 加速,促进,加速度

  equilibrium n. 平衡,均衡

  gravitation n. 万有引力

  resonance n. 共鸣, 共振, 洪亮

  amplify v. 扩大, 详述, 使...增幅

  amplification n. 扩大, 扩充,膨胀 n. 详述, 引伸,推广 n. 增幅, 放大(率), 放大倍数

  amplifier n. 放大器, 扩音机

  conservation n. 保存, 防止流失, 守恒, 保护自然资源

  thermodynamics n. 热力学

  ultrasonics n. 超声学

  appliance n. 器具,器械,装置,应用

  alloy n. 合金 vt. 使...成合金, 搀以劣质, 减低成色, 影响或贬损 vi. 有合金能力

  property n. 财产; 性质; 道具

  trumpet n. 喇叭,喇叭声,喇叭手 vt. 宣扬;鼓吹;吹嘘 vi. 吹喇叭,发出喇叭似的声音

  trombone n. 长号,伸缩喇叭

  damp n. 毒气,湿气,丧气 adj. 潮湿的 vt. 呛,抑制,使潮湿 vi. 衰减

  dampen v. (使)潮湿, 使沮丧, 泼凉水

  undamped adj.不潮湿的

  patina n. 绿锈, 光泽, 古色, 神态, 圣餐盘 【机】 铜绿

  halt n. 停止,中止; 暂停; 小火车站 vt. 使停止; 使中断; 阻止; 使立定 vi. 停止,立定; 犹豫

  hull n. 壳, 皮, 船体 v. 去壳

  barnacle n. 黑雁

  film n. 电影, 胶卷, 薄膜 vt. 把...拍成电影, 给...覆上一薄层 vi. 从事电影拍摄

  desalination n. 脱盐(作用)

  optics n. 光学

  optical adj. 眼睛的, 视觉的, 光学的

  optical fiber n. 光导纤维

  fiber n. 纤维(物质),力量

  lens n. 镜头,透镜

  refract vt. 使折射, 测定屈光度

;

umagraphics是什么意思

超音波学。根据调查英语词汇结果得知,ultrasonics发音:英翻译:n.超音波学,超声波(ultrasonic的名词复数)。

ultrasonic是什么意思

ultrasonic
adj.超声的; 超音波的,超音速的;
n.超声波;
复数:ultrasonics
以上结果来自金山词霸
例句:
1.
The latest fish-finders combine different ultrasonic frequencies and beam angles toprobe the water around a boat.
最新的钓鱼研究者使用不同频率的超声波和光束来探测一艘船周围的水。

英语翻译

简介
机场的鸟类控制
方法论探讨
鸟类控制产品和技术
栖息环境改变
长草丛
声音威慑
装载实弹的猎qiang和步qiang(用拼音减小被和谐风险)
烟火
猎qiang
闪光弹
手qiang
火箭和散弹
空气炮和爆炸物
Agri-SX
Phoenix Wailer(凤凰哀鸣)系统(系统名称,不必翻译)
Bird Gard AVA 和 Bird Gard ABC(名称)
Av-报警
遇险和报警信号
引来天敌
高强度声音
超声波
飞机引擎噪音和次声
视觉驱赶物
稻草人
反射镜和反射带
天敌模型
鹰型风筝和气球
燕鸥模型
猎鹰
飞机
无线电控制的模型飞机

染色

化学驱赶剂
触觉驱赶物
行为驱赶物
苯菌灵和福美双
邻胺基苯甲酸甲酯 - ReJeX-iT
其它味觉厌恶物
排除方法
关于设置障碍物的一些考虑因素
架射线路
泡沫
Bird Balls™ 鸟球(注册商标产品,不必翻译)
消灭方法
陷阱
实弹射击
表面活性剂和喷水
其它产品和技术
引诱区
磁铁
微波
激光
小结和推荐
不推荐
谨慎推荐
强烈推荐
栖息地变更
主动鸟类控制
结论
推荐读物
致谢
引用文献
简介
自从鸟击被确认为一种飞行安全灾害后,人们就对控制这种灾害的技术和产品产生了兴趣。的确,近几年来机场和其它场所对鸟击控制措施的需求有所增长。航空交通量的不断增大,以及开发出更大、更快、更安静的喷气式引擎飞机已使严重的鸟击风险不断加大。在加拿大,随着加拿大交通部(Transport Canada)将机场的日常管理权转交给私营机场管理者,这些管理者就对他们所管理的机场内的鸟击灾害负起了责任(以及极大的潜在义务)。机场管理者应采取适应不同情况的鸟类控制措施以显示其尽忠职守,这是非常重要的。他们应使用适当的产品和技术,同时,了解什么是性价比最好的方法也很重要。

求翻译 文献中的第一段(上接提问http://zhidao.baidu.com/question/190581582.html 未完待续)

1。介绍
新开发的新兴技术是目前在不同领域的一个主要的挑战
对生活质量的提高在世界上的更大。很明显,他们必须环保和节能
技术保证可持续发展。大功率超声波可以被视为一个整体,这些技术。事实上,
它的目的是用于医学治疗一个如此迅猛发展的区域,它被认为是一种“繁荣”。这个
应用的超声能量产生或提高工业过程,也是一种新兴的区域,应
包含在《超声潮”。
工业用超声波能量已经被开发了自二十世纪,但只有少数人
许多应用一直到目前为止商业介绍。然而在过去的10到15年了
对超声加工的兴趣已经出现,尤其是在那些领域的超声能量
可能是一个清洁、高效的工具,为提高或产生影响。这样的情况有关
食品工业等行业、环境、医药和化工生产、机械等
功率超声技术已成为突发工艺的开发。
潜在的功率超声包括物理、化学过程。主要有物理过程
归属于机械性能的影响时,在任何媒体的高强度波化学过程参考
化学效应所致的超声在液体。后者过程包括在任期
sonochemistry。一般的整个区域sonoprocessing或超声加工
可能的主要应用中存在的问题,对功率超声加工工业设计
高效的电源和发展的超声波发生器和核反应堆系统能够成功的规模
特别适应每个个体的操作过程。
在该地区的超声加工中流体介质和更明确的气体,发展了家庭
对发电机和广泛的散热器已经强烈促成了在半产业化和实施
工业的商业应用的几种等相关行业,在食品工业、环境、过程
制造业等。另一方面,发展的空化反应器中液体治疗
流是帮助引进工业广阔的潜在的面积sonochemistry。
本文论述了复习一些最近在超声加工的礼物
潜在的现状及进展大功率超声波技术作为一种创新的若干
部门。

ultrasonics(有投过ultrasonics的吗,为嘛一直with editor)

本文编辑:admin
: ultrasonics,ultrasonic,so,

更多文章:


三星i908e(我的三星i908e电池充满电后用不到一天是怎么回事)

三星i908e(我的三星i908e电池充满电后用不到一天是怎么回事)

本文目录我的三星i908e电池充满电后用不到一天是怎么回事三星i908E开机密码忘了,怎么格机为什么我的三星i908e开机时按电源开关没反应,只能扒电池现在三星手机的最新款是什么型号的价位大概是多少呢三星i908E有什么缺点吗I908E M

2024年6月7日 04:14

用夜神模拟器中毒了,电脑会不会也中毒?夜神模拟器是什么

用夜神模拟器中毒了,电脑会不会也中毒?夜神模拟器是什么

本文目录用夜神模拟器中毒了,电脑会不会也中毒夜神模拟器是什么夜神模拟器如何打开.npbk文件模拟器哪个比较好用夜神安卓模拟器用起来怎么样夜神模拟器文件导出方法夜神安卓模拟器夜神模拟器开不了怎么办夜神模拟器怎么用电脑上玩手游有什么好用的模拟器

2024年2月21日 22:55

三星l720(买三星l720好还是小米2s)

三星l720(买三星l720好还是小米2s)

本文目录买三星l720好还是小米2s三星 GALAXY S4(L720)的介绍三星l720怎么连接蓝牙耳机三星SPH--L720手机开机就发热为何三星 GALAXY S4(L720)的基本参数美版三星l720wifi信号差怎么办三星gala

2024年5月30日 18:10

联想手机用户体验(联想手机的用户体验是什么能不能卸载)

联想手机用户体验(联想手机的用户体验是什么能不能卸载)

本文目录联想手机的用户体验是什么能不能卸载联想手机用户体验那个怎么关掉联想手机的用户体验是什么能不能卸载联想用户体验是联想手机自带的预装软件,该软件是用于收集和记录对联想产品的体验,便于后续产品的改进。可以获取ROOT权限后使用如手机管家类

2023年8月15日 08:40

天翼行迅通具有哪些功能?沃·行讯通的介绍

天翼行迅通具有哪些功能?沃·行讯通的介绍

本文目录天翼行迅通具有哪些功能沃·行讯通的介绍广州交通行讯通小程序 打不开如何下载沃·行讯通服务通过哪些途径可以申请到天翼行迅通广州公交查询“行讯通”安卓测试版最近总是连接服务器失败,是否已经停止了服务我如果不想使用沃·行讯通,怎么取消可以

2024年7月2日 09:47

中兴银行信用卡年费多少钱(中信银行哪个信用卡年费980)

中兴银行信用卡年费多少钱(中信银行哪个信用卡年费980)

本文目录中信银行哪个信用卡年费980想问中信银行金卡有年费吗中信银行信用卡的收费标准中信银行金卡信用卡年费中信银行信用卡白金卡年费是多少请问一下中信银行双币信用卡年费是多少“中信银行信用卡年费标准”是什么意思中信银行信用卡年费是多少中信银行

2023年10月15日 01:35

塞班3手机有哪些(推荐一款诺基亚塞班symbian ^3手机)

塞班3手机有哪些(推荐一款诺基亚塞班symbian ^3手机)

本文目录推荐一款诺基亚塞班symbian ^3手机使用塞班三版和五版的手机型号诺基亚所有塞班3手机有哪些诺基亚采用塞班3系统的手机有哪些塞班3手机有哪些使用塞班^3新系统的都有哪几款手机和运存是256RAM的塞班手机都有哪几款(全部)塞班3

2024年3月6日 02:55

华为荣耀20i忘记密码锁怎么开锁(那个我手机是华为荣耀20i的手机,锁屏密码忘了,现在解不开锁,有什么解决办法吗)

华为荣耀20i忘记密码锁怎么开锁(那个我手机是华为荣耀20i的手机,锁屏密码忘了,现在解不开锁,有什么解决办法吗)

本文目录那个我手机是华为荣耀20i的手机,锁屏密码忘了,现在解不开锁,有什么解决办法吗华为手机忘记密码怎样开锁如何才能解开华为荣耀20i华为荣耀20i忘记锁屏密码了怎么办(!)那个我手机是华为荣耀20i的手机,锁屏密码忘了,现在解不开锁,有

2024年6月16日 10:44

华为note8有没有红外线(华为nova8pro有红外线遥控功能吗)

华为note8有没有红外线(华为nova8pro有红外线遥控功能吗)

本文目录华为nova8pro有红外线遥控功能吗荣耀note8有nfc吗Nova8支持红外线吗nova8有红外遥控吗华为nova8pro有红外线遥控功能吗华为 nova 8 Pro不支持红外线及红外遥控功能。品牌型号:华为nova8pro系统

2024年5月15日 21:23

小米官方售后服务维修电话(小米售后服务24小时服务热线)

小米官方售后服务维修电话(小米售后服务24小时服务热线)

本文目录小米售后服务24小时服务热线小米售后服务热线电话小米售后和官方维修中心电话小米售后电话是多少小米手机售后电话小米售后服务24小时服务热线小米手机售后服务24小时服务热线小米客服电话售后维修小米售后服务维修电话小米售后服务24小时服务

2024年4月3日 18:25

oppok7手机价格和参数(oppok7优点和缺点介绍-oppok7评测)

oppok7手机价格和参数(oppok7优点和缺点介绍-oppok7评测)

本文目录oppok7优点和缺点介绍-oppok7评测oppok7参数配置oppoReno4se和oppok7哪个好值得入手-参数区别对比oppok7上市时间及参数oppok7和k5有什么区别-oppok7和k5参数对比oppok7和oppo

2024年2月4日 06:00

炫影发上去视频怎么看不到画面怎么看不到画面?订购爱动漫专题包-炫影视频都有哪些功能

炫影发上去视频怎么看不到画面怎么看不到画面?订购爱动漫专题包-炫影视频都有哪些功能

本文目录炫影发上去视频怎么看不到画面怎么看不到画面订购爱动漫专题包-炫影视频都有哪些功能爱动漫炫影视频业务中包含了哪些业务好的电影网站我手机上面点播了个炫影视频,是什么内容手机上的爱动漫炫影视频里有个签名炫影,这个是要怎么弄的啊炫影发上去视

2023年8月17日 11:20

魅蓝E评测:最贵的魅蓝手机带来了什么?魅蓝e外插u盘怎么安装

魅蓝E评测:最贵的魅蓝手机带来了什么?魅蓝e外插u盘怎么安装

本文目录魅蓝E评测:最贵的魅蓝手机带来了什么魅蓝e外插u盘怎么安装魅蓝e声音从usb声卡输出怎么弄掉我的魅蓝e手机外接u盘怎么不显示魅族魅蓝手机MTP USB设备驱动怎么安装教程魅蓝E怎么root魅族魅蓝E连接不了电脑怎么办魅蓝 E2怎么刷

2023年11月2日 00:05

金立手机gn139(金立手机GN139是不是不能用联通3G网络啊)

金立手机gn139(金立手机GN139是不是不能用联通3G网络啊)

本文目录金立手机GN139是不是不能用联通3G网络啊金立GN139怎么样金立手机刚出的GN139怎么样配置怎么样值得买吗金立gn139充不进电或突然没电是什么原因金立GN139 四核    这个手机怎么样金立gn139刷机怎么刷金立GN13

2023年10月14日 05:35

htc c510e(htc c510e屏幕左上方出现上下箭头是什么意思)

htc c510e(htc c510e屏幕左上方出现上下箭头是什么意思)

本文目录htc c510e屏幕左上方出现上下箭头是什么意思为什么HTC C510e会无故吃流量是我什么系统没关吗htc c510e root权限如何获取我的手机是htc c510e 微博定制板的我想root了不会弄,自己试了一下也不行,那位

2024年1月20日 23:10

索尼官网账号怎么注册(怎么注册psn账号)

索尼官网账号怎么注册(怎么注册psn账号)

本文目录怎么注册psn账号我买得索尼相机,如何去网上注册刚买的索尼电脑怎么注册索尼会员申请sony ps4账号 如何申请账号索尼产品如何网上注册怎么 注册 索尼的用户 怎么注册psn账号具体操作步骤如下:一、登陆网站,选择新建一个账号。二、

2024年6月3日 06:26

2手苹果13多少钱(二手苹果13卖的2点左右是不是正版)

2手苹果13多少钱(二手苹果13卖的2点左右是不是正版)

本文目录二手苹果13卖的2点左右是不是正版二手苹果13拆过屏幕4600值吗二手苹果13卖的2点左右是不是正版不是。二手苹果13的价格会很高的,在5000左右才正常,二手苹果13卖的2点左右不是正版。2000是不可能会买到真的苹果13的,可能

2024年5月3日 23:30

华为畅享10鸿蒙激活设备密码(华为手机恢复出厂设置后激活设备密码是多少)

华为畅享10鸿蒙激活设备密码(华为手机恢复出厂设置后激活设备密码是多少)

本文目录华为手机恢复出厂设置后激活设备密码是多少华为手机恢复出厂设置激活设备密码忘记怎么办华为畅享10激活密码是啥华为激活手机密码是多少华为畅享10把锁屏密码忘了怎么办华为鸿蒙系统手机格式化后卡在激活密码华为手机恢复出厂设置后激活设备密码是

2024年5月4日 06:20

红米pro+和pro有什么区别(红米k40 pro和红米k40 pro+具体有啥区别吗)

红米pro+和pro有什么区别(红米k40 pro和红米k40 pro+具体有啥区别吗)

本文目录红米k40 pro和红米k40 pro+具体有啥区别吗小米11pro和pro+的区别redminote11tpro和pro+区别红米note11pro+和红米note11pro区别对比-哪个更值得入手红米note11tpro和11p

2024年6月6日 07:06

诺基亚6700s怎么充电(诺基亚6700S电池 第一次充电要充多长时间)

诺基亚6700s怎么充电(诺基亚6700S电池 第一次充电要充多长时间)

本文目录诺基亚6700S电池 第一次充电要充多长时间Nokia6700s能用USB接口的充电器充电吗诺基亚6700s要充12小时吗诺基亚6700S可以用数据线插到充电器插头充电吗不会有什么事吧是用数据线代替原来的充电线哦诺基亚6700S充电

2024年3月29日 09:00

近期文章

本站热文

电脑包尺寸对照表(电脑包要多大)
2024-07-02 11:29:03 浏览:3755
e10000(皖E10000是什么车)
2024-07-02 21:24:52 浏览:3498
ati radeon hd 5650(电脑的显卡是ATI Mobility Radeon HD 5650 (MADION PRO) ( 1 GB ) 这个显卡)
2024-06-26 03:11:22 浏览:3092
华为mate20pro版本区别(mate20pro有必要买ud版吗)
2024-07-02 22:04:37 浏览:2616
ipad买蜂窝版还是wifi版(ipad air 5买蜂窝好不好)
2024-06-26 01:03:39 浏览:2221
vivo y3配置参数(vivoy3参数是什么)
2024-07-02 21:50:09 浏览:2062
标签列表

热门搜索